FARADAY AND LENZ

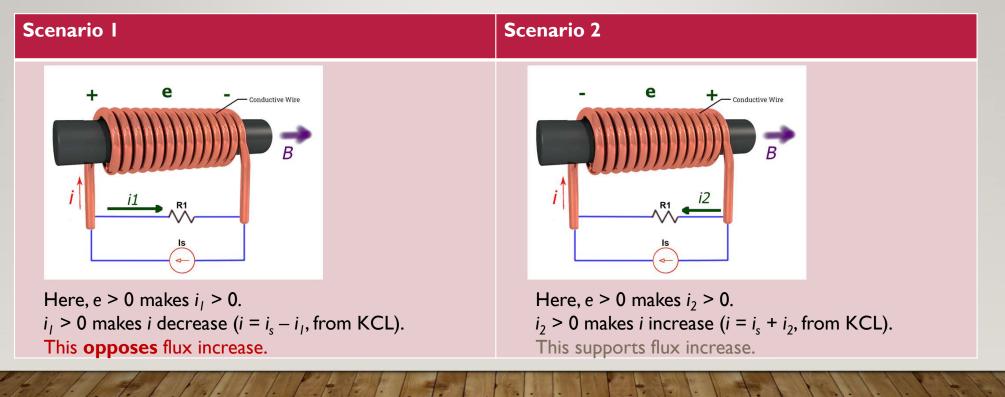
- Faraday's Ist law
 - "an electromotive force will be induced in a wire placed in a varying magnetic field."
- Faraday's 2nd law
 - "the magnitude of the induced EMF is proportional to the rate of change of the magnetic field in which the wire is placed."
- => $|e| \propto \frac{\partial B}{\partial t}$
- Lenz's law
 - "the current induced in a circuit due to a change in a magnetic field is directed to oppose the change in flux and to exert a mechanical force which opposes the motion."
- Modern version
 - $e = -\frac{d\phi}{dt}$
 - Recall that the negative sign means the direction of emf will induce a current to oppose the change in flux.

PHYSICS VS LCA (I)

- LCA: property of inductor
 - $V_L = L \frac{di_L}{dt}$ where V_L and i_L are voltage across and current flowing through the inductor, both defined in a passive convention.
- Physics: coil / inductor
 - Current i induces magnetic field B.
 - $B = \mu_0 n i/l$ where n is a number of turns.
 - $\psi_m = B A$ where A is a cross-sectional area, $A = \pi r^2$ where r is a radius of the coil.
 - Therefore, $\psi_m = \mu_0 n i \pi r^2 / l$.
 - Take derivative, $\frac{d\psi_m}{dt} = \mu_0 n \pi r^2 \frac{di}{dt}$.
 - Since change in flux induces emf, then $e = -n \frac{d \psi_m}{d t} = -\frac{n^2 \mu_0 \pi r^2}{l} \frac{di}{dt} = -L \frac{di}{dt}$.
- !What's going on here! LCA: $V_L = L \frac{di_L}{dt}$ vs. Physics: $emf = -L \frac{di_L}{dt}$.

PHYSICS VS LCA (II)

• Questions

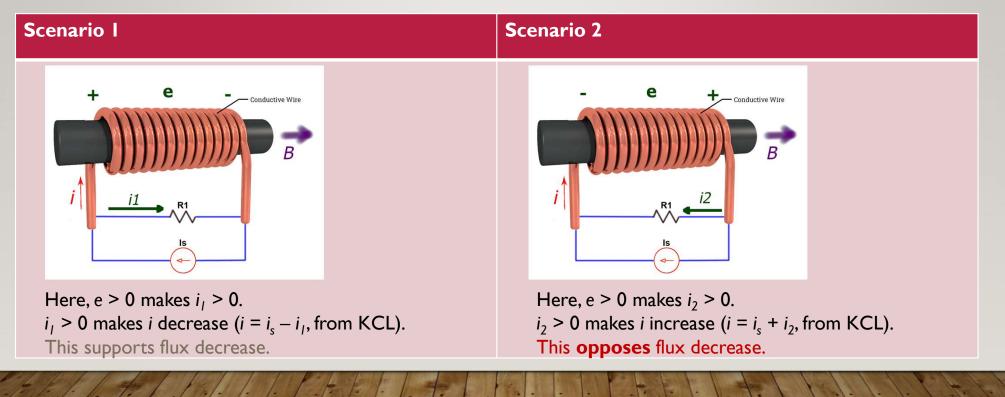

- I. LCA defines V_L and i_L per passive convention. What are the direction of emf and i defined in physics?
- 2. Recall that Faraday's is about magnitude of emf, but Lenz says the direction of emf is to induce the current to oppose the change in flux.
- 3. Just additional notion: $n^2 \mu_0 \pi r^2 \equiv L$ is only valid for air core, if the inductor is made using other type of core the permeability must be change accordingly.

PHYSICS VS LCA (III)

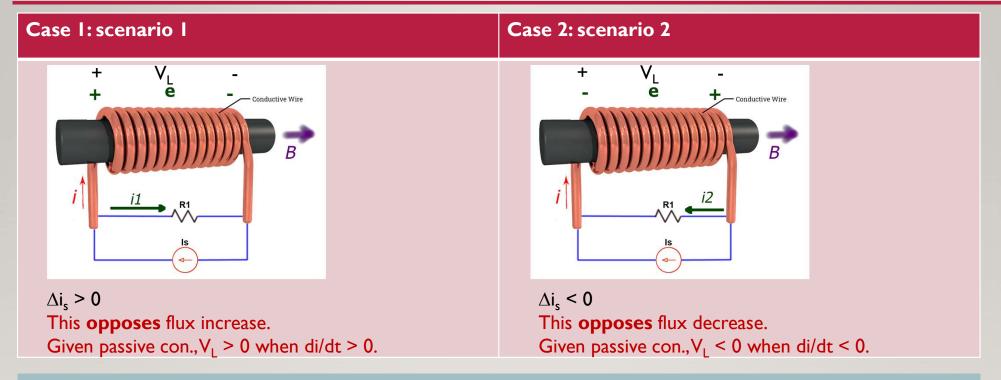
Let's get into detail.

Case I

• $\Delta i_s > 0 \rightarrow \Delta i > 0 \rightarrow \Delta B > 0 \rightarrow \Delta \Psi > 0 \rightarrow emf$ (in the direction inducing a current to oppose $\Delta \Psi$)



PHYSICS VS LCA (IV)


Let's get into detail.

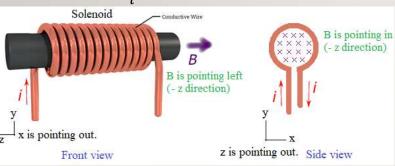
Case II

• $\Delta i_s < 0 \rightarrow \Delta i < 0 \rightarrow \Delta B < 0 \rightarrow \Delta \Psi < 0 \rightarrow emf$ (in the direction inducing a current to oppose $\Delta \Psi$)

PHYSICS VS LCA (V)

Verdict: in both cases, V_L has the same sign as di/dt.

That is, $V_L = L \frac{di}{dt}$, given the passive convention.

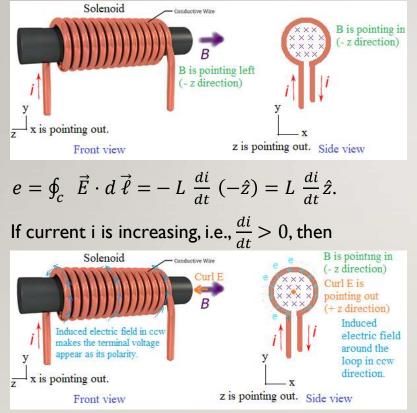

PHYSICS VS LCA (VI)

Let's do it properly with direction.

Recall
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 or $\oint_{c} \vec{E} \cdot d\vec{\ell} = -\frac{d}{dt} \int_{S} \vec{B} \cdot \hat{n} da$
and $\nabla \times \vec{B} = \mu_{0} \left(\vec{J} + \epsilon_{0} \frac{\partial \vec{E}}{\partial t} \right)$ or $\oint_{C} \vec{B} \cdot d\vec{\ell} = \mu \left(I_{enc} + \epsilon \frac{d}{dt} \int_{S} \vec{E} \cdot \hat{n} da \right)$.

Current i induces magnetic field .

Solenoid: $\vec{B} = \frac{\mu n i}{l} (-\hat{z})$; B is pointing to the $-\hat{z}$ direction; magnitude $|B| = \frac{\mu n i}{l}$.



 $\vec{\psi} = \vec{B} A$ where A is a cross-sectional area, $A = \pi r^2$ where r is a radius of the coil.

Therefore,
$$\vec{\psi} = \frac{\mu n i \pi r^2}{l} (-\hat{z})$$
 and
then take derivative, $\frac{d\vec{\psi}}{dt} = \frac{\mu n \pi r^2}{l} \frac{di}{dt} (-\hat{z})$

Denote $L = \frac{\mu n \pi r^2}{l}$. Since change in flux induces emf, then $e = \oint_c \vec{E} \cdot d\vec{\ell} = -\frac{d}{dt} \int \vec{B} \cdot \hat{n} da = -\frac{d\vec{\psi}}{dt} = -L \frac{di}{dt} (-\hat{z}).$

PHYSICS VS LCA (VII)

Students are encouraged to work on other scenarios, e.g.,

- Current i is decreasing, $\frac{di}{dt} < 0$.
- Current is increasing, but coil is wound ccw, $\vec{B} = \frac{\mu n i}{l} \hat{z}$.
- Current is decreasing with coil wound ccw, $\vec{B} = \frac{\mu n i}{l} \hat{z}$.
- Current is flowing in another direction.
- ..
- Note
 - if change is +, v_L (as passive convention) is +
 - and when change is -, v_L is –
 - then it approves passive convention.

Notice that when change is positive the induced voltage appeared at the terminal is positive, per **passive convention**.

RESIST TO CHANGE

• Lenz

- "the current induced in a circuit due to a change in a magnetic field is directed to oppose the change in flux and to exert a mechanical force which opposes the motion."
- Le Chatelier
 - "When a simple system in thermodynamic equilibrium is subjected to a change in concentration, temperature, volume, or pressure, the system changes to a new equilibrium, and this change partly counteracts the applied change."
- Homeostasis
 - Homeostasis is brought about by a natural resistance to change when already in optimal conditions, and equilibrium is maintained by many regulatory mechanisms: it is thought to be the central motivation for all organic actions.